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In recent years approximation algorithms based on primal-dual methods have been successfully applied to a broad class of discrete
optimization problems. In this paper, we propose a generic primal-dual framework to design and analyze approximation algorithms
for integer programming problems of the covering type that uses valid inequalities in its design. The worst-case bound of the
proposed algorithm is related to a fundamental relationship (called strength) between the set of valid inequalities and the set of
minimal solutions to the covering problems. In this way, we can construct an approximation algorithm simply by constructing the
required valid inequalities. We apply the proposed algorithm to several problems, such as covering problems related to totally
balanced matrices, cyclic scheduling, vertex cover, general set covering, intersections of polymatroids, and several network design
problems attaining (in most cases) the best worst-case bound known in the literature.

In the last 20 years, two approaches to discrete optimiza-
tion problems have emerged: polyhedral combinatorics

and approximation algorithms. Under the first approach,
researchers formulate problems as integer programs and
solve their linear programming relaxations. By adding
strong valid inequalities (preferably facets of the convex
hull of solutions) to enhance the formulations, researchers
are able to solve large-scale discrete optimization prob-
lems within a branch-and-bound or branch-and-cut frame-
work. Extensive computational experience suggests that
the success of this approach critically depends on the
choice of the valid inequalities. The principal difficulty
with this approach, however, is that it is not a priori clear
which class of valid inequalities is better at particular in-
stances. The research community typically relies on com-
putational experience to evaluate the valid inequalities.

The second approach involves design and analysis of
approximation algorithms. The quality of solutions pro-
duced is judged by the worst-case criterion, for which there
are two main motivations: (a) understanding, from a theo-
retical point of view, the class of problems that can be
approximated well, and (b) designing algorithms for prob-
lems that are robust, i.e., work well for all inputs. The area
has produced significant insight into our finer understand-
ing of 13 (see Arora et al. 1992), and for some problems
it has produced algorithms that have been successfully
used in practice (see, for instance, Williamson 1994).

In recent years, it has been recognized that tight LP
relaxations can often be used as a basis for analyzing and
deriving performance bounds for heuristics for NP-hard
problems. By comparing the heuristic value with the value
of the dual of the proposed LP relaxations, the primal-
dual method has been successfully applied to analyze a

variety of exact and approximation algorithms. Some of
the best known exact algorithms for problems in combina-
torial optimization, including the matching, spanning tree,
shortest path, and network flow problems, are based on
this approach. (See Nemhauser and Wolsey 1988.) The
method has also been applied to analyze approximation
algorithms for covering problems (see Chvatal 1979, Dob-
son 1982, Hochbaum 1982, Bar-Yehuda and Even 1981,
and Hall and Hochbaum 1989), vertex feedback set prob-
lems (Bar-Yehudar et al. 1994), and network survivability
problems (Klein and Ravi 1993, Goemans and Williamson
1992, Goemans et al. 1993, Williamson et al. 1993, Wil-
liamson 1994). These analyses, however, appear to be
problem specific. Moreover, the analyses do not usually
offer insight into the design of such algorithms.

This paper is motivated by the authors’ desire to find an
algorithmic technique to design approximation algorithms
when better formulations are available. Based on the work
of Goemans and Williamson, we present a generic frame-
work to design approximation algorithms for covering-type
problems. We adopt the conventional approach of measur-
ing the tightness of a relaxation by the ratio of the opti-
mum fractional solution (denoted Z) and the IP optimum
(denoted IZ). In particular, we say an LP relaxation is a
l-approximation if Z ¶ IZ ¶ lZ. We also say that a
proposed heuristic H that produces a solution with value
ZH is a l-approximation algorithm if ZH ¶ lIZ. Through-
out this paper we consider only minimization problems,
and we assume that the objective function is nonnegative.
The key property exploited in this paper is the notion of a
minimal integral solution. A feasible integral solution x is
called minimal if x 2 ei is not feasible for all i (ei is the i-th
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unit vector with all coordinates zero, except for a one in
the ith coordinate).

For a covering-type problem with a nonnegative objec-
tive function, it is easy to see that the set of minimal
integral solution contains an optimal solution to the
problem.

The contributions of the paper are as follows.

1. We present a generic primal-dual framework to design
and analyze approximation algorithms for integer pro-
gramming problems of the covering type, utilizing valid
inequalities of the problems to design the algorithm.
Furthermore, we show that the worst-case approxima-
tion bound corresponds to a fundamental relationship
(called strength) between the valid inequalities used
and the set of minimal integral solutions. In this way we
can construct a l-approximation algorithm simply by
constructing the required valid inequalities.

2. We apply the framework to several classical problems,
attaining in most cases the best worst-case bound
known in the literature. Though the algorithms con-
structed by this framework are not as efficient as the
known ones, the analysis of the algorithms is consider-
ably simpler.

The paper is structured as follows. In Section 1, we
describe the generic primal-dual framework for 0–1 cover-
ing problems. We also introduce the notion of strength for
a set of valid inequalities, and we prove that the perfor-
mance of the primal-dual algorithm is bounded by the
strength. Furthermore, utilizing the underlying geometry
of the algorithm, we show that the bound is tight. In Sec-
tion 2, we introduce the notion of reducible formulations
and show that a large collection of problems fall into this
framework. We further show how to compute the strength
of several problems that have reducible formulations. In
Section 3, using an idea from Williamson et al., we con-
sider variations of the basic primal-dual algorithm for
more general problems.

1. PRIMAL-DUAL FRAMEWORK FOR COVERING
PROBLEMS

In this section we propose a framework to design and
analyze primal-dual approximation algorithms for prob-
lems of the following type:

~IP! min O
j51

n

c j x j ,

subject to O
j51

n

a ij x j > b i , ; i [ $1, . . . , m% ,

x j > 0,

x j [ $0, 1% ,

where all parameters aij, cj are nonnegative. Problems of
this type are called 0–1 covering problems. We let A de-
note the constraint matrix (aij), and b the right-hand-side
vector. We also denote by Z(cover) (resp. IZ(cover)) the

value of the optimal LP (resp. IP) solution. Z(cover) is
obtained from (IP) by removing the constraint that x is a
0–1 vector. We do not include the constraints xj ¶ 1
explicitly in Z(cover). Note that, in general, we do not
need bi to be nonnegative, since the ith constraint is trivi-
ally redundant in this case.

We first describe informally the ideas on which the algo-
rithm is based. The primal LP we consider at first is the set
6 of all valid inequalities to IZ(cover). It contains in par-
ticular the set of inequalities in Z(cover). At each step of
the algorithm a valid inequality is chosen, and this will be
used to decide which one of the primal variables will be
fixed at 1. We then repeat the procedure on the modified
problem instance. Note that any valid inequality for the
modified problem instance is automatically in 6. After a
feasible primal solution is found in this way, we use a
reverse deletion step to ensure that the solution obtained
is a minimal solution. More formally, the algorithm pro-
ceeds as follows.

Primal-dual Algorithm 3$

Y Input: A, b, c, ( A, c Ä 0).
Y Output: xH feasible for (IP) if the problem is feasible.

Step 1. Initialization: Let r 5 1; A1 5 A, b1 5 b, c1 5 c;
IS1 5 { x [ {0, 1}n; Ax Ä b}; IP1 5 min{c1x;x [ IS1},
F1 5 {1, . . . , n}.

Step 2. Addition of valid inequalities: Construct a valid
inequality ¥i[Fr

ai
rxi Ä br for the convex hull of solutions

in ISr:
Set

y r 4 min
i[Fr

H c i
r

a i
r;a i

r . 0J ,

k~r!4 argmin
i[Fr

H c i
r

a i
r;a i

r . 0J .

Step 3. Problem modification:
Set x#k(r) 5 1; Fr11 5 Fr\{k(r)}.
Set Ar11 5 Ar \ Ak(r)

r , br11 5 br 2 Ak(r)
r , cr11 5 cr 2 yra

r.
Set ISr11 5 { x [ {0, 1}n2r; Ar11x Ä br11}.
Let (IPr11) denote the instance min{cr11x; x[ISr11};
r 4 r 1 1. Repeat Step 2 until the solution obtained is
feasible to the original problem, else conclude that the
problem is infeasible.

Step 4. Reverse deletion: Consider the variables selected
in each step xk(1), xk(2), . . . , xk(t), in that order. Let Ct 5
{ xk(t)}. For r from t 2 1 to 1, in reverse order,

Y Set Cr 4 { xk(r)} ø Cr11.
Y Set x#k(r) 5 0 if Cr\{ xk(r)} corresponds to a minimal

feasible solution to problem instance IPr.

Step 5. Set xi
H 5 1 if xi [ C1. Return xH. Let ZH 5 cxH.

Note that we have not specified the valid inequalities to
be used at each stage of the primal-dual algorithm 3$.
The performance of the algorithm depends critically on
the choice of the inequalities. For ease of presentation, if
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the variable xi does not appear in the current problem
instance, we set ai

r 5 0, so that we maintain the same
dimensionality for all the inequalities used. We also write
ar for the vector corresponding to (a1

r , a2
r , . . . , an

r ).
In order to analyze the performance of the algorithm we

introduce the following definition.

Definition 1. The strength lr 5 s(ar, br) of the inequality
¥i ai

rxi . br with respect to instance IPr is defined to be:

l r 5 maxH O i a i
rw i

b r
;w minimal integral solution for IP rJ .

A different notion of strength, has been used earlier by
Goemans (1995) to compare several valid inequalities for
the Traveling Salesman Problem. The reverse deletion
step that ensures the minimality of the solution was first
used on a class of network design problems in Goemans
and Williamson, Williamson et al., and Williamson. Algo-
rithm 3$ can be seen as a generalization of these algo-
rithms to general covering problems.

Let t be the number of valid inequalities added by the
primal-dual algorithm. In order to bound the performance
of the primal-dual algorithm let:

~LP D ! Z D 5 min$cx;a rx > b r, r 5 1, 2, . . . , t, x > 0%.

and l 5 maxr51, . . . ,t lr.
Note that by our construction all constraints in (LPD)

are feasible for the original covering problem IP1. Thus,
ZD ¶ IZ(cover).

Theorem 1. Let xH, y denote the primal and dual solution
returned by the algorithm 3$. Let l denote the maximum
strength of all the inequalities used. Then

Z H 5 cx H < l O
r51

t

y r b r < lZ D .

In particular:

(a) ZH ¶ lIZ(cover).
(b) Moreover, if all the inequalities arx Ä br are redundant

inequalities for Ax Ä b, x Ä 0, then ZH ¶ lZ(cover).

Proof. By construction, xH and y are primal and dual fea-
sible, respectively. Let xk(r) be the variable selected in the
rth stage of the algorithm. Let xr be obtained from xH by
setting xk(1)

H , . . . , xk(r21)
H to 0. By construction, xr is a min-

imal solution to (IPr). We first prove by induction that for
every r 5 t to 1:

c rx r < l O
iÄr

y i b
i. (1)

For r 5 t, since xt is a minimal solution to IPt, and by the
definition of strength

a tx t < lb t,

which implies that

c tx t 5 c k~t! 5 y t a k~t!
t 5 y t a

tx t < ly t b
t.

Assuming that the induction hypothesis holds for all k Ä
r 1 1, we obtain (by the way we update the cost vectors) that

c rx r 5 @c r11 1 y r a r# x r.

Since ck(r)
r11 5 0,

c rx r 5 c r11x r11 1 y r a rx r.

Applying the induction hypothesis and using arxr ¶ lbr

(by the definition of strength and the minimality of xr), we
obtain (1), since

c rx r < l O
i¶r11

y i b
i 1 ly r b r.

Since { yj}jÄ1 forms a feasible solution to the dual of the
relaxation (LPD),

Z H 5 cx H < l O
r

y r b r < lZ D < lIZ~cover!.

If in addition, all the inequalities arx Ä br are redundant
to Ax Ä b, x Ä 0, then ZH ¶ lZ(cover). □

By this theorem, we can construct a l-approximation
algorithm if we can find valid inequalities with strength
bounded by l at each stage of the algorithm. For cases
where several of these inequalities exist, each inequality
gives rise to a different primal-dual approximation algo-
rithm. The running time of the algorithm is determined by
the time to construct a valid inequality, update the objec-
tive function and the right-hand side and delete redundant
rows and construct a minimal solution at each stage of the
algorithm. Note that the LP formulation need not be ex-
plicitly given. Since the number of stages is clearly upper
bounded by the number of variables, the algorithm runs in
polynomial time if the previous three steps can be imple-
mented in polynomial time.

1.1. A Geometric View of the Primal-Dual Algorithm

Let us first develop some geometric insight on the strength
of an inequality. Let conv(IP) denote the convex hull of all
minimal integral solutions to problem (IP). Let ax Ä b

denote a valid inequality for conv(IP), touching conv(IP)
at a vertex x1. (See Figure 1.) It corresponds to a hyper-
plane with all the vertices of conv(IP) on one side. Let l

denote the strength of this inequality with respect to (IP).

Figure 1. Geometry of the strength of an inequality.
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By the definition of l, the vertices of conv(IP) are “sand-
wiched” between the hyperplane ax 5 b and ax 5 lb. A
valid inequality that gives the “thinnest” slab sandwiching
the vertices of conv(IP) will thus result in the best bound
in terms of strength. This geometric view enables us to
show next that the bound of Theorem 1 is essentially tight.

Theorem 2. Assume that the first valid inequality ax Ä b

we introduce in Algorithm 3$ achieves the maximum
strength l. Then, for all e . 0 there exists a cost vector
such that Algorithm 3$ outputs a solution xH with cost

Z H > l~1 2 e!IZ~cover! .

Proof. Let x9 be a minimal solution with ax9 5 max{ax;x
minimal in (IP)} 5 lb. Let C denote the set of indices k
with x9k 5 1. For each k [ C, set ck 5 ak. Set ck 5 ak 1 g

for all k [y C, with g . 0. By this choice of cost function c,
after updating the cost function with the valid inequality
ax Ä b in the algorithm, the new costs for all i [ C, are 0.
Thus, the algorithm always returns the solution x9, with
objective value

Z H 5 ax9 1 g O
i[y C

x9i > lb .

Moreover, IZ(cover) ¶ cx1, where x1 is a vertex in
conv(IP) with ax1 5 b. Therefore,

IZ~cover! < ax 1 1 g O
i[y C

x i
1 < b 1 gn.

By choosing g 5 eb/n, we can ensure that under the cost c

Z H

IZ~cover!
>

lb
b 1 gn 5

l
1 1 e

> l~1 2 e! . □

Remark 1. The previous theorem illustrates that the no-
tion of strength is inherent in the primal-dual approach
and not an artifact of the analysis.

Remark 2. For the network design problem, it was also
clear from the work of Goemans and Williamson and from
Williamson et al. that a valid inequality with improved
strength would improve the approximation bound of their
algorithms.

Remark 3. In the next section we apply Algorithm 3$ to
several problems. In all these applications the maximum
strength is attained at the first stage; therefore, the bounds
attained for the respective problems are essentially tight.
This eliminates the need to construct problem-specific ex-
amples that attain the bound.

2. REDUCIBLE FORMULATIONS AND
APPROXIMABILITY

In this section we illustrate the power of Theorem 1 by
showing that some of the best known results in approxima-
tion algorithms for covering problems are special cases of
Theorem 1. Theorem 1 reduces the construction of good
approximation algorithms to the design of valid inequali-
ties of small strength. At first sight it appears difficult to
bound the maximum strength of a class of inequalities,

since at each stage we need to bound the strength of the
inequality we add with respect to a new problem instance.
We next illustrate that for a rather rich class of formula-
tion, bounding the strength can be greatly simplified.

2.1. Reducible Formulations

We consider covering problems of the form:

~IP n ! min cx
subject to Ax > b,

x [ $0, 1% n,

where A is an m 3 n matrix, and c is an n-vector with
nonnegative integer entries. Entries in b are integral, but
are not restricted to be nonnegative, since rows corre-
sponding to negative bi are redundant. Note that we have
explicitly stated the dependence on the problem size n. We
assume that formulation (IPn) models problems from a
problem class #. By fixing variable xj to 1, we create the
following problem:

~IP n21
j ! min c# x# ,

subject to A# x# > b 2 A j

x# [ $0, 1% n21,

where c#, x# are obtained from c, x by deleting the coordi-
nate corresponding to variable xj, and A# is an m 3 (n 2 1)
matrix obtained from A by deleting the column corre-
sponding to the variable xj.

Definition 2. Formulation (IPn) is reducible with respect
to problem class # if for all j formulation (IPn21

j ) belongs
to problem class #.

In other words, reducible formulations of a problem with
respect to a problem class # have the property that the new
smaller instance that results by fixing a variable still belongs
in problem class #. The importance of reducible formulations
in the context of the primal-dual algorithm 3$ is that we can
bound the strength of an inequality with respect to the origi-
nal problem’s instance, since by the definition of a reducible
formulation even after fixing a variable, the problem instance
belongs in the same class. Therefore, given a reducible cover-
ing formulation, there is no need to calculate the strength of
a given inequality with respect to an instance generated in the
course of the primal-dual algorithm. Since by reducibility all
the instances belong in the same class, it suffices to calculate
the strength with respect to the original instance. This greatly
simplifies the calculation of strength as we show next.

2.2. The Minimum Spanning Tree Problem

Let G denote an undirected graph on the vertex set V and
edge set E. Let d(S) denote the set of edges in [S, S# ].
More generally, if (S1, . . . , Sk) is a partition of the node
set V, then d(S1, . . . , Sk) denote the set of edges in [Si, Sj]
for all i Þ j. The minimum spanning tree (MST) problem
asks for a spanning tree that minimizes a given nonnega-
tive objective function c. Since c is nonnegative, we can
solve the problem by the following cut formulation:
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~CUT ! IZ CUT 5 min cx ,

subject to O
e[d~S!

x e > 1, ; S , V,

x e [ $0, 1% .

By fixing some xe to be 1, we obtain a new cut formulation
for the MST on uVu 2 1 nodes. The new problem instance
is obtained from G by contracting the edge e 5 (i, j)
(combining i, j into a supernode a and adding an edge (a,
k) whenever (i, k) [ E or ( j, k) [ E). Thus formulation
(CUT) is reducible with respect to the MST problem.

By adding the multicut constraints first suggested by
Fulkerson (1971), we arrive at the multicut formulation:

~MCUT ! IZ MCUT 5 min cx ,

subject to O
e[d~S1 , . . . , Sk !

x e > k 2 1, ; ~S 1 , . . . , S k !

partitioning of V,
x e [ $0, 1% .

Fixing xe 5 1 in (MCUT), we again arrive at a multicut
formulation for G contracted at the edge e. Thus the mul-
ticut formulation is reducible. The LP relaxation of this
formulation gives the complete characterization of the
dominant of the spanning tree polytope. By applying The-
orem 1 we provide a simple proof of the integrality of the
multicut polyhedron, as well as the known tight bound on
the duality gap of IZCUT and ZCUT.

Theorem 3. The inequality ¥e[E xe Ä n 2 1 is valid for the
multicut polyhedron and has strength 1, i.e.,

IZ MCUT 5 Z MCUT . (2)

The inequality ¥e[E xe Ä n/2 is valid for the cut polyhe-
dron and has strength 2(1 2 1/n), i.e.,

Z H

Z CUT
< 2~1 2

1
n! . (3)

Proof. We first consider the multicut formulation
(MCUT). Since ¥e xe Ä n 2 1 is a valid inequality (con-
sider a partition of V into the nodes), and all minimal
solutions, being trees, have at most n 2 1 edges, the
strength of this inequality is 1. By using inequalities of this
type in each stage of the algorithm, we obtain an optimal
integral solution to the spanning tree problem, thus show-
ing (2).

We next consider the cut set formulation (CUT). Since
¥e xe Ä n/2 is a valid inequality (add all the cut inequali-
ties for singletons), the strength is 2(1 2 1/n), thus show-
ing (3). □

Remark 4. Using inequalities (e xe Ä n21 in Algorithm
3$, we obtain the classical Kruskal Algorithm.

2.3. The Shortest Path Problem

Let s, t be two distinct vertices in an undirected graph G.
The problem of finding the shortest path from s to t can be
modeled as an edge-covering formulation

~SP! IZ SP 5 min cx ,

subject to O
e[d~S!

x e > 1, ; S;

s [ S, t [y S or t [ S, s [y S,
x e [ $0, 1%.

It is easy to observe that formulation (SP) is again re-
ducible. In this case, the following theorem is immediate.

Theorem 4. Inequalities:

1. x(d(s)) Ä 1;
2. x(d(t)) Ä 1; and
3. ax(d(s)) 1 bx(d(t)) Ä a 1 b,

have strength 1, i.e.,

IZ SP 5 Z SP .

Using any of these inequalities in each stage of our
primal-dual framework, we would have obtained an opti-
mal shortest path solution. Each choice of the inequalities
gives rise to the (1) forward Dijkstra, (2) backward Dijk-
stra, and (3) bidirectional Dijkstra algorithm, respectively.
Our analysis indicates that one can, in fact, use any of the
three inequalities at each stage of the algorithm.

2.4. Special Cases of the General Covering Problem

Consider the problem:

~GC! IZ GC 5 min cx ,
subject to Ax > b,

x [ $0, 1% n,

where aij and cj are nonnegative integers. Fixing some
variable xj to 1, we have a new instance that still has the
property that the matrix A# and the vector c# are nonnega-
tive integers. Thus, formulation (GC) is reducible with re-
spect to the class of general covering problems.

Hall and Hochbaum proposed a dual heuristic for the
case when aij are 0 or 1, with ZH(GC) ¶ fZGC, f 5 maxi

¥j51
n aij. We refer to this bound as the row-sum bound.

Bertsimas and Vohra (1998) proved that the same bound
holds with general values of aij. We next show that algo-
rithm 3$ produces the same bound for problem (GC).

Theorem 5. The strength of the inequalities aix Ä bi , i 5
1, . . . , m is at most f, i.e., Algorithm 3$ applied to these
inequalities produces a solution such that

Z H

Z GC
< f. (4)

Proof. Consider an inequality aix Ä bi. Let x9 be a mini-
mal solution to (GC). Clearly, aix9 ¶ f; therefore, li ¶ f/bi

¶ f. Since the row sum reduces after each step of the
algorithm, the strength of all inequalities is bounded above
by f. Therefore from Theorem 1, (4) follows. □

2.5. Vertex Feedback Set

Let G be a graph with weights defined on its nodes. The
Vertex Feedback Set (VFS) problem asks for a minimum
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weighted set of nodes that intersects all cycles of the graph
G. A natural set covering formulation for this problem has
the form

O
v[C

x~v! > 1 ; cycle C in G .

Recently, Bar-Yehuda et al. constructed a 4 log(uVu) ap-
proximation algorithm for VFS, using the following results
of Erdös and Pósa 1962.

Theorem 6. If G has minimum degree at least 3, then G
contains a cycle of length not more than 2 log(uVu).

We next show that this theorem leads immediately to
the proposed bound for the (VFS). The analysis uses sev-
eral ideas from Bar-Yehuda et al. In general, all degree 1
vertices in the graph G can be deleted, since they will not
be contained in any minimal VFS. Moreover, by repeat-
edly contracting the degree 2 vertices with their neighbor,
we obtained a new graph G9 with minimum degree at least
3. By the above theorem, there is a cycle C in G9 with at
most 2 log(uVu) nodes. We can then construct a cycle C9 in
G such that C9 consists of at most 2 log(uVu) nodes of
degree at least 3 and at most 2 log(uVu) disjoint chains
consisting of degree 2 nodes. Since all minimal VFS inter-
sect these chains at most once, we have Theorem 7.

Theorem 7. The inequality ¥v[C9 x(v) Ä 1 has strength at
most 4 log(uVu).

By deleting all cycles that contain a particular node, say
v, we reduced the problem to another VFS on G 2 v.
Hence at each stage of the algorithm, there exists an in-
equality of strength at most 4 log(uVu). The algorithm 3$
in this case corresponds to the 4 log(uVu) approximation
algorithm proposed in Bar-Yehuda et al.

2.6. Proper and Uncrossable Functions

Consider the following edge-covering problem introduced
in Goemans and Williamson:

~UC! IZ UC 5 min O
e

c e x e ,

subject to O
e[d~S!

x e > f~S! , S , V,

x e [ $0, 1% ,

where the function f defined on 2V is a symmetric 0–1
function, f(V) 5 0, and f satisfies further the following
uncrossability property:
If S, T are intersecting sets with f(S) 5 f(T) 5 1, then
either f(S 2 T) 5 1, f(T 2 S) 5 1 or f(S ù T) 5 f(S ø
T) 5 1.
f is called uncrossable if the above property holds. A two-
approximation algorithm for this class of problem was first
proposed by Williamson et al. It generalized an earlier
algorithm in Goemans and Williamson designed for a
more restrictive 0–1 function f, such that

f~S ø T ! < max$ f~S! , f~T !% , (5)

for all disjoint S and T, and f symmetric. Symmetric func-
tions f satisfying (5) are called proper functions. Note that
the conditions for properness imply uncrossability. We re-
fer the readers to Goemans and Williamson for a long list
of problems that can be modeled as edge-covering prob-
lems with 0–1 proper functions f. (Note that formulations
(CUT) and (SP) for the minimum spanning tree and the
shortest path belong in this class.) The edge-covering for-
mulations are reducible with respect to both 0–1 uncross-
able functions and proper functions. By fixing an edge xe

to 1, we see that the cut condition for all S containing e in
the cut set is satisfied. Hence the problem reduces to an
edge-covering problem on G contracted at e (denoted by
G + e). The corresponding function f on G + e inherits the
uncrossability (or respectively properness) property.

In this section we exhibit valid inequalities for (UC) of
strength at most 2. While a proof of the next theorem can
be extracted from Williamson et al., we offer a new self-
contained proof.

We say S is a minimal set if f(S) 5 1 and f(T) 5 0 for
all T , S.

Theorem 8. Let {S1, . . . , Sl} denote a maximal collection
of disjoint subsets Sj with f(Sj) 5 1 for all Sj, and f(T) 5 0
if T , Sj for some j. The strength of the inequality

O
j51

l O
e[d~Sj !

x e > l, (6)

is 2(1 2 1/l ), i.e.,

Z H

Z UC
< 2~1 2

1
l ! .

Proof. Let F denote a minimal set of edges corresponding
to a feasible solution, and let G[F] be the graph induced
by the set of edges F. It suffices to prove that:

O
j51

l
x F ~d~S j !! < 2~l 2 1!. (7)

Note that the coefficients of edges in d(Si, Sj) are 2,
whereas those between d(Si, V 2 øjSj) are 1. We use also
the following fact:
Contract G[F] at the sets S1, . . . , Sl. The contracted graph
G9[F] is again a forest.

Let U 5 V \{S1, . . . , Sj}. Let T1, . . . , Tm denote the
connected components in U under F. Let G9 denote the
new graph obtained from G[F] by treating all Sjs and Tks
as nodes. Let f9 be the function induced on G9 by f.
Clearly, f9 is also uncrossable and symmetric, and F9 5
F ù E(G9) is again a minimal solution with respect to f9.
F9 consists of all the edges counted in (7). Note that this
construction need not necessarily reduce the size of the
graph. If none of the nodes Tj has degree 1 in G9, then (7)
follows immediately from the forest structure of F9. For each
i, delete Ti and its incident edges. Connect all neighbors of Ti

by a path. This transformation does not increase the count
for (7). In this way, we obtain a forest defined only on the
nodes of S1, . . . , Sj. Since the forest has at most l 2 1 edges,
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we have the result. So we may assume that deg(T1) 5 1,
and the edge e connects T1 to the vertex S1.

We will use induction on the number of nodes in G9 to
compute (7). To do so, we will contract a suitable subgraph
of G9 with size at least 2.

Case 1. If deg(S1) is also 1, then f9({S1, T1}) 5 0.
Contract the graph at the component {S1, T1}. If there is
no set S, with f9(S) 5 1 that contains the component {S1,
T1} and does not contain Si for any i Ä 2, then the number
of disjoint minimal sets in the contracted graph reduced to
l 2 1. Using induction on the number of nodes, the con-
tribution by the rest of the edges of F9 to (7) is at most
2(l 2 2). Counting e, we have

O
j51

l

x F ~d~S j !! < 2~l 2 2! 1 1 < 2~l 2 1! .

If a set S with the above property exists, then the number
of disjoint minimal sets for the contracted graph remains
at l, but there must be an edge e9 incident to S and some
Si, i Ä 2. (See Figure 2.)

This edge is counted twice in this contracted instance
under the induction hypothesis, whereas its contribution to
(7) is 1. So we have

O
j51

l

x F ~d~S j !! < $2~l 2 1! 2 1% 1 1 5 2~l 2 1!.

Case 2. Suppose degG9(S1) Ä 2. By minimality of F9,
there exists a set W in the vertex set of G9 such that d(W)
5 {e}, where e 5 (S1, T1), f9(W) 5 1, and S1 , W. By
symmetry, f9(W# ) 5 1. Thus, uWu Ä 2, uW# u Ä 2. Let GW, GW#

denote respectively the graph obtained from G9 by con-
tracting W# and W into a single node. (See Figure 3.)

These are minimal solutions with respect to f9 restricted to
the vertex sets of GW and GW# . Let lW, lW# denote the number
of Si’s contained in W and W# , respectively. By our modifica-
tion, the number of disjoint minimal sets in GW and GW# are
lW 1 1 and lW# 1 1, respectively. Using induction on the
number of nodes, the contribution of edges in GW and GW# to
(7) are, at most, 2lW and 2lW# , respectively. Note that the edge
e 5 (S1, T1) has been counted three times, once in GW# and
twice in GW, whereas its contribution to (7) is 1. There-
fore,

O
j51

l

x F ~d~S j !! < 2l W 1 2l W# 2 2

5 2~l 2 1!.

Hence the theorem holds. □

A direct corollary of the analysis in the previous theo-
rem is the observation that the strength of

O
j51, jÞk

l

x~d~S j !! > l 2 1,

and

O
j51, jÞk1 , jÞk2

l

x~d!S j )) > l 2 2,

are 2 2 1/(l 2 1) and 2, respectively, Using these inequal-
ities in Algorithm 3$ leads to an approximation algorithm
with bound not worse than 2.

So far we have not indicated how one could find the
minimal sets Si’s used in the construction of the inequality.
If f is proper, then the sets Si’s are simply all the nodes v
with f(v) 5 1; thus, we could implement the primal-dual
algorithm in polynomial time. For the case of uncrossable
functions, the question is open.

2.7. Constrained Contra-polymatroids

Consider the problem

~CP! IZ CP 5 min O
i

c i x i

subject to x~S! 5 O
i[S

xi > f~S!, S , N 5 $1, . . . , n%,

x i [ $0, 1%,

where f satisfies f(À) 5 0 and

f~S! 1 f~T ! < f~S ù T ! 1 f~S ø T ! ~supermodular!; (8)

f~S! < f~T !, ; S , T ~nondecreasing!. (9)

Figure 2. Case 1 with deg S1 5 1.

Figure 3. Case 2 with deg (S1) greater than 1.
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The function f is called a contra-polymatroid function (see
Shapley 1971). Notice that we have the additional restric-
tion that xi [ {0, 1}, giving rise to what we call a con-
strained contra-polymatroid problem.

If we set xi 5 1 and modify the constraints, we have a
problem instance on N\{i}, with f9(S) 5 max( f(S), f(S ø
i) 2 1) for all S in N\{i}. Clearly, f9(S) ¶ f9(T) if S , T ,
N\{i}. To show supermodularity, suppose f9(S) 5 f(S),
f9(T) 5 f(T ø i) 2 1. Then

f9~S! 1 f9~T ! < f~S ù T ! 1 f~S ø $T 1 i%! 2 1

< f9~S ù T ! 1 f9~S ø T ! .

The other cases can be handled similarly. Thus f9 is a
contra-polymatroid function. The formulation is thus re-
ducible.

Theorem 9. The inequality

O
i[N

x i > f~N!,

has strength 1, thus

IZ CP 5 Z CP .

Proof. Let x9 be a minimal solution. By minimality, there
exists a set Si with f(Si) 5 1 (called a tight set) containing
each x91 5 1. Hence

x9~S i ! 1 x9~S j ! 5 f~S i ! 1 f~S j !

< f~S i ù S j ! 1 f~S i ø S j !

< x9~S i ù S j ! 1 x9~S i ø S j !

5 x9~S i ! 1 x9~S j ! .

Hence Si ø Sj is again tight. By repeating this proce-
dure, we obtain x9(T) 5 f(T) for some T with x9i 5 0 for i
[y T. Since f(T) ¶ f(N), x9(N) 5 x9(T) Ä f(N), we obtain
x9(N) 5 f(N). Hence the strength of the inequality is 1.
The constrained contra-polymatroid polytope is thus
integral. □

This analysis reveals that one can indeed remove the
conditions that f is nondecreasing, and the LP formulation
will still be tight, provided we use the valid inequality
¥i[S xi Ä f(S) at each stage of the algorithm, where S is
chosen to be the set that maximizes f[ and has the maxi-
mum cardinality among such sets.

A direct generalization of this argument to the intersec-
tion of k constrained contra-polymatroids leads to the fol-
lowing theorem:

Theorem 10. The strength of the inequality ¥i xi Ä f1(N)
1 . . . 1 fk(N)/k for the intersection of k contra-
polymatroids is k, i.e., Algorithm 3$ has a worst-case
bound of k.

Remark 5. Although for k 5 2 there exists a polynomial
algorithm (see Nemhauser and Wolsey 1978), Algorithm
3$ has a faster running time. Note that Fisher et al. stud-
ied a related problem on packing of k matroids, attaining
also the same bound k.

2.8. Set Covering Problems

In this section we consider special cases of the set covering
problem:

~COVER! IZ COVER 5 min cx
subject to Ax > 1,

x [ $0, 1% n,

where A is a 0–1 matrix. We show that the application of
Theorem 1 in the following cases gives rather strong re-
sults.

1. A is called a row-inclusion matrix if A does not con-
tain the submatrix (01

11). This class of matrices plays an
important role in the study of totally balanced matrices.
(See Nemhauser and Wolsey.) It is easy to verify that the
covering formulation is reducible with respect to the row-
inclusion property. By removing all redundant constraints
after deleting the kth column from A, one obtains another
constraint matrix with the row inclusion property.

Theorem 11. The strength of the first inequality a11x1

1 . . . 1 a1nxn Ä 1 is 1.

Proof. Consider a minimal solution x9. We show that a11x91
1 . . . 1 a1nx9n ¶ 1. Assuming otherwise, then there exist i,
j with

a 1i 5 a 1j 5 x9i 5 x9j 5 1,

and i , j. By the minimality of x9, if we set x9j to 0, then
the solution is no longer feasible. Thus, there exists a row
k such that aki 5 0 and akj 5 1. This, however, contradicts
the fact that A is a row-inclusion matrix; therefore, the
inequality a11x1 1 . . . 1 a1nxn Ä 1 has strength 1, proving
that Algorithm 3$ finds an optimal solution in this
case. □

2. Suppose A has consecutive ones in all its columns.
This class of matrices belongs to the class of totally unimo-
dular matrices, and therefore the underlying polyhedra are
integral. There exists an optimal algorithm that first trans-
forms the problem to a shortest path problem. (See, for
instance, Ahuja et al. 1993.) We show that Algorithm 3$
is a direct optimal algorithm for the problem.

Theorem 12. The strength of the first inequality a11x1

1 . . . 1 a1nxn Ä 1 is 1.

Proof. Consider a minimal solution x9. We will show that
a11x91 1 . . . 1 a1nx9n ¶ 1. Assuming otherwise, then there
exist i, j with

a 1i 5 a 1j 5 x9i 5 x9j 5 1,

and i , j. By the minimality of x9, if we set x9j to 0, then
the solution is no longer feasible. Thus there must exist a
row k such that aki 5 0 and akj 5 1. Symmetrically, there
must exist a row l such that alj 5 0 and ali 5 1, where i ,
j. Assuming k , l (otherwise we consider the jth column),
we have a1i 5 1, aki 5 0 and ali 5 1, violating the consec-
utive ones property. Therefore, the inequality a11x1

1 . . . 1 a1nxn Ä 1 has strength 1, proving that Algorithm
3$ finds an optimal solution in this case. □
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3. For arbitrary 0–1 matrix A, a direct generalization of
the previous argument yields Theorem 13.

Theorem 13. The first inequality a11x1 1 . . . 1 a1nxn Ä 1
has strength

max
i51,2, . . . ,n

$ g i 1 1% ,

where gi is the maximum gap between any two ones in the
ith column.

Obviously, the previous bound can be optimized by consid-
ering permutations of the rows to attain the bound

min
p

max
i51,2, . . . ,n

$ g i ~p! 1 1% .

4. Suppose A has consecutive ones in each row. We may
assume without loss of generality that there is no redun-
dant inequality in the constraints.

Theorem 14. Inequality x1 1 x2 1 . . . 1 xL Ä 1 has
strength 1, where for some L, aij 5 1 for j ¶ L, and aij 5 0
for j . L.

Proof. Let x9 be a minimal solution. We show that x91 1 x92
1 . . . 1 x9L ¶ 1. Assuming otherwise, suppose x9u 5 x9v 5 1
for some u , v ¶ L. Then by minimality, there exists a
constraint ¥j aijxj Ä 1 with aiu 5 1, but aiv 5 0. By the
consecutive ones property, this implies that the inequality
x1 1 x2 1 . . . 1 xL Ä 1 is redundant, a contradiction.
Therefore, inequality x1 1 x2 1 . . . 1 xL Ä 1 has strength
1. □

5. Matrices A with circular ones in rows. (See Bartholdi
et al. 1980.) Again we may assume that there is no redun-
dant inequality in the constraints. By similar reasoning we
can easily show Theorem 15.

Theorem 15. Every constraint in Ax Ä 1 has strength at
most 2.

3. MULTIPHASE EXTENSION OF THE
PRIMAL-DUAL ALGORITHM

In this section we propose an extension of Algorithm 3$
to 0–1 covering problems, in which the right-hand-side
vector b need not be all 1, unlike most of those problems
considered in the previous section. In this case, the
strength of the valid inequalities tends to be weak. To
achieve a better approximation bound, we use an idea
from Williamson et al. to apply Algorithm 3$ in phases.

Let bmax 5 maxi bi. Note that we will delete columns
from the constraints as the algorithm progresses, but by
slight abuse of notation, we will maintain the dimension of
the x-vector. The coordinates of x corresponding to de-
leted columns should be treated as zero.

Multiphase primal-dual Algorithm }3$

Step 1. Initialization: k 5 1, A1 5 A, b1 5 b, c1 5 c.

Step 2. Phase k: Let hi 5 1 if bi 5 bmax and hi 5 0
otherwise.

Apply Algorithm 3$ to the problem:

IZ k 5 min c kx,

subject to A kx > h k

x [ $0, 1% n,

yielding a solution xk with cost ZH
k 5 ckxk.

Let JK 5 { j;xj
k 5 1}.

Ak11 5 Ak\{Aj
k}j[Jk

(delete the columns of Ak corre-
sponding to the indices in set Jk).

bk11 5 bk 2 Akxk, ck11 5 ck\{cj}j[Jk
, and k 5 k 1 1.

Step 3. Repeat Step 2 until the solution x with xj 5 1 for
all j [ økJk is feasible. If after min(bmax, n) phases a
feasible solution is not found, conclude that the problem is
infeasible.

Lemma 1. Any valid inequality for phase k 1 1 is valid for
phase k.

Proof. Suppose ax Ä b is valid for {Ak11x Ä bk11, x [ {0,
1}n}. Note that aj 5 0 for j in Jk, since the corresponding
columns have been deleted before phase k 1 1. We will
show that all x* such that Akx* Ä bk, x* [ { 0, 1}n satisfy
ax* Ä b.

Let x* 5 ~ x*Jk
, x*J# k

!. Then

A kx* 5 A k11x*J# k
1 A kx*Jk

> b k,

hence

A k11x*J# k
> b k 2 A kx*Jk

> b k11.

The last inequality follows from the fact that bk11 5 bk 2
¥j[Jk

Aj
k and x* is 0–1. Hence, ax* 5 ax*J#k

Ä b. □

Let xH be the solution obtained by Algorithm }3$ and
ZH 5 cxH. In the next theorem we bound the performance
of the algorithm.

Theorem 16. There are the following cases.

1. If at each phase k the worst bound for the strength of
inequalities used in Algorithm 3$ is l, and all inequal-
ities used by Algorithm 3$ are redundant for {Akx Ä
hk, x Ä 0} for each phase k, then

Z H

Z < l*~b max !, (10)

where *(n) 5 ¥i51
n 1/i.

2. If at each phase k the worst bound for the strength of
inequalities used in Algorithm 3$ is l, but some ine-
qualities are not redundant to {Akx Ä hk, x Ä 0} for
each phase k, then

Z H

IZ < lb max . (11)

Proof. We prove the theorem by induction on bmax. For
bmax 5 1, Algorithm }3$ reduces to Algorithm 3$ and
(10) follows from Theorem 1. Assuming (10) is true for
bmax 2 1, we prove it for bmax. For ease of exposition we
introduce the notation:
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P~b, c!: Z b,c 5 min cx ,
subject to Ax > b ,

x [ @0, 1# n.

We denote the corresponding optimal solution x*(b, c).
We also denote with IZ(b, c) the value of the correspond-
ing 0–1 problem. After the first phase of Algorithm }3$,
the solution x1 produced has cost

O
j[J1

c j < lZ h,c < l
Z b,c

b max
,

because the solution x*(b, c)/bmax is feasible for the prob-
lem P(h, c). The cost function for the next stage is c9j 5 cj

for j not in J1. Although the variables xj with j [ J1 are
not present in the next phase, we prefer to set c9j 5 0 for
j [ J1. By this slight abuse of notation, we can view c9 as
the cost function for the second phase of the algorithm.
Let b9 denote the right-hand-side parameters for the next
stage. Clearly,

Z b9,c9 < Z b,c9 < Z b,c .

Since b9max is at most bmax 2 1 in the next phase, we can
invoke the induction hypothesis to assert that the Algo-
rithm }3$ returns a solution x9H (with J9H 5 { j;x9H, j 5 1})
with cost

O
j[J9H

c j < l*~b max 2 1! Z b9,c9 < l*~b max 2 1! Z b,c .

The superposition of the solutions x1 and x9H with support
J1 ø J9H is the solution produced by Algorithm }3$ on
the original input. It has cost ZH 5 ¥j[J1øJ9H

cj ¶ l(*(bmax

2 1) 1 1/bmax) Zb,c 5 l*(bmax) Zb,c, proving (10).
When the value of the heuristic is within l from the

optimal integer solution, the proof is identical, except that
we can only guarantee ¥j[J1

cj ¶ lIZh,c ¶ lIZb,c. The
induction on bmax proceeds along the same lines, except
that ZH 5 ¥j[J1øJ9H

cj ¶ l(bmax 2 1)IZb,c 1 lIZb,c 5
lbmaxIZb,c. □

3.1. Applications

In this section we outline a number of applications of
Theorem 16. All of these applications are special cases of
formulation (IP).

1. Matrix A with consecutive ones in columns (or rows),
b arbitrary. At each phase of Algorithm }3$, columns
from matrix A and redundant constraints are deleted, and
the new problem instance reduced to A9x Ä 1, where A9
again has the consecutive ones property. Hence the formu-
lation is reducible; therefore, at each phase of }3$ we
can use Theorem 12 (respectively, 14) with l 5 1. Apply-
ing Theorem 16, Algorithm }3$ leads to a solution xH

with

Z H

Z < *~b max ! .

In contrast, the known optimal algorithm for the problem
transforms the problem to a min-cost flow algorithm, at
the expense of doubling the problem size.

2. Cut covering problems with weakly supermodular
functions. Goemans et al. generalized the notion of un-
crossable function considered in Section 1 to arbitrary
nonnegative function f. A function f is called weakly su-
permodular function, if it is symmetric and

f~S! 1 f~T ! < max$ f~S 2 T ! 1 f~T 2 S!, f~S ø T !

1 f~S ù T !% . (12)

If f satisfies the stronger property (5), then f is called
proper. Again, weakly supermodular functions encompass
the class of proper functions. Moreover, the edge-covering
formulation is reducible with respect to weakly super-
modular functions. Note that, however, the formulation is
not reducible with respect to arbitrary proper functions
(although it is reducible for 0–1 proper functions). These
observations underscore an important advantage of the
notion of reducible formulations. By considering a wider
class of problems (weakly supermodular functions), we
simplify the analysis for a more restrictive class of prob-
lems (proper functions). Theorem 16 immediately applies
to derive an approximation algorithm for cut-covering
problems with weakly supermodular function f, first ob-
tained in Goemans et al. using considerably more compli-
cated proof methods.

Theorem 17. Algorithm }3$ is a 2* ( fmax) approxima-
tion algorithm for cut-covering problems with weakly super-
modular functions, where fmax 5 maxS f(S).

Proof. Define h(S) 5 1 if f(S) 5 fmax, h(S) 5 0 otherwise.
It can be easily verified that h(S) is a symmetric uncross-
able function whenever f(S) is weakly supermodular. Since
f(S) 2 ¥e[Fùd(S) xe is still weakly supermodular, the for-
mulation is reducible with respect to weakly supermodular
functions; therefore, Theorem 16 applies with l 5 2 (for
uncrossable functions, Theorem 1) leading to

Z H

Z < 2*~ f max !.

Remark 6. When f is proper, there is a polynomial time
procedure to construct the minimal sets used in the con-
struction of the valid inequalities. (See Williamson et al.).
The case for weakly supermodular function is open.

3. More general cut-covering problems.
We consider next an extension of the edge-covering

problem (also considered in Goemans et al., in which ae

copies of the edge e are to be used if we decide to include
the edge e in the solution. We assume ae . 0. This leads to
the following formulation:

~MU! min O
e

c e x e ,

subject to O
e[d~S!

a e x e > f~S!, S , V ,

x e [ $0, 1%,

where f is again weakly supermodular.
Note that the LP relaxation of the above formulation

could be arbitrarily bad due to the presence of ae in the
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constraint matrix. In the case when f is 0–1, then the set of
integral solution remains the same, even if we set all ae to 1
corresponding to the cut-covering problem described in the
previous section. Thus there is an approximation algorithm
that returns a solution with cost not more than twice the cost
of the optimal integral solution. The reason that the result
does not hold for the optimal LP solution is that the valid
inequalities used are not redundant. Given that the formula-
tion is still reducible, we use (11) and obtain a bound of

Z H

IZ MU
< 2f max ,

which is also the bound obtained in Goemans et al.

4. CONCLUDING REMARKS AND OPEN
PROBLEMS

In this paper we have used the strength of valid inequalities
to design approximation algorithms for a broad class of cov-
ering problems. An advantage of this approach is that we
have decomposed the design of the algorithm into stages, and
in each stage we can use the strength of inequalities to guide
us to the next stage. This framework allows us to look at
many classical and recent primal-dual algorithms in a new
way, leading, we believe, to unified and simpler proofs of
performance bounds. This framework can also be used to
design primal-dual algorithms for large fractional covering
problems that arise in several stochastic scheduling prob-
lems. We refer the readers to Teo (1996) for details.

The approach also raises several issues in the design of
such algorithms:

1. Given a reducible covering problem, can one con-
struct a valid inequality of the least strength? This will be
an intrinsic bound for the primal-dual approach. Further-
more, for general set covering problems, is there a routine
to generate such valid inequalities?

2. The construction of the worst-case example shows
that one should use the information on the objective func-
tion to guide the choice of valid inequalities used at each
stage of the algorithm. More generally, the strength as a
bound arises because there is no coordinated effort across
stages during the construction of the algorithm: Can one
impose a dynamic programming-like structure into the
choice of valid inequality at each stage?

3. The notion of strength depends also on problem in-
stances. By imposing additional structure on the problem,
like restricting the graphs to be planar or of bounded-tree-
width in the network design problem, will the strength
improve?
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